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Using a Monte Carlo simulation technique, we have investigated the model of a simple catalytic 
reaction (the Langmuir-Hinshelwood mechanism) 

A + Z t :~AZ,  B2 + 2Z ,~2~BZ, 

AZ + BZ k3~ AB + 2Z, k 3 ~ 2 ,  

under varying intensities of surface diffusion. Having compared the results of the MC simulation 
with those obtained previously in the model based on the kinetic equations (formulated under the 
assumption of ideal adsorbed layer, the IAL model), we found the conditions under which both 
models give identical results. The difference between the results obtained with the IAL and those 
obtained with the MC model is associated with clustering of the adsorbed substances on the 
surface. © 1991 Academic Press, Inc. 

INTRODUCTION 

The mechanisms of catalytic reactions 
and their elementary stages are investigated 
by using two types of models: (i) those 
based on ordinary kinetic equations (sys- 
tem of ODEs, usually based on the 
Langmuir hypothesis about the ideal ad- 
sorbed layer), and (ii) those in which any 
molecular act is simulated directly by the 
Monte Carlo (MC) method. As a rule, the 
results obtained with these two models dif- 
fer considerably. The questions then arise: 
what is the reason for these differences and 
when do both models give identical results? 
Thus, it is a problem of mutual mapping of 
the models. Answers to these questions are 
of great importance for developing MC 
models, because they permit us to select 
adequate algorithms for the MC simulation 
in some cases. On the other hand, MC sim- 
ulation may be used to prove the validity of 
the assumptions of the analytical theory. 

In this paper we compare in detail the 
behavior of the ideal adsorbed layer (IAL) 
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model with that of the MC model of cata- 
lytic reaction, which occurs in accordance 
with the Langmuir-Hinshelwood mecha- 
nism 

kl 
(1) A + Z > A Z  

k2 
(2) B2 + 2Z ) 2 B Z  (1) 

k3 
(3) A Z + B Z  ~ A B  + 2Z  

for the special c a s e  k3 ~ oo. Mechanism (1) 
corresponds to the CO oxidation reaction 
on platinum metals (1-3) .  The symbol A de- 
notes a CO molecule, B2 an 02 molecule, 
and Z an active site on the surface. 

The IAL model of mechanism (1) (in 
terms of the law of surface action) was 
comprehensively investigated in the early 
1970s in a series of papers summarized in 
(4). The study of MC models began in 1986 
with paper (5), and papers (6-12)  were pub- 
lished in following years. As far as we 
know, a consistent comparison of the 
results obtained with the MC model with 
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predictions of  the analytical model was car- 
ried out only in Refs. (9, 10). In paper  (9) 
the MC model of  mechanism (1) was stud- 
ied for a finite reaction rate (k3 ~ ~) in the 
absence of surface diffusion of  the adsorbed 
particles. The competi t ive adsorption of  re- 
agents and their reaction on the surface ap- 
peared to result in an insignificantly inho- 
mogeneous island structure of  the adsorbed 
layer. To describe the results of  their MC 
experiments in terms of the IAL model,  
some authors (9) have considered the fact 
that particles interact by open boundaries 
under the clustering, and respectively 
changed the system of  kinetic equations. In 
(I0) the MC model of  mechanism (1) for the 
case k3 ~ o~ was also investigated. It was 
established that if a reaction rate coefficient 
dependent  on nearest neighbors is used, if 
this coefficient is included correct ly in a 
scheme of  probability calculations, and if 
there exists a sufficiently high rate of  sur- 
face diffusion, providing homogenei ty of  
the adsorbed layer, then the results of  MC 
simulation are in very good agreement with 
the predictions of  the IAL model for a wide 
range of  parameters.  

The MC model of  mechanism (1) for the 
case k3 ~ ~ without surface diffusion has 
been comprehensively studied (5-8) with- 
out comparison with the IAL model. In our 
paper we have made an attempt to fill this 
gap. First, we describe the results of the 
MC model investigation, obtained in (5-8),  
and then we compare them with our results 
obtained with the same model under limited 
surface diffusion. We compare  both results 
with the predictions of  the IAL model. We 
show that for  the case k3 ~ ~, the MC 
model 's  results approach " in  the limit" 
those of  the IAL model in two cases: (i) 
under an increasing surface diffusion inten- 
sity d; and (ii) under a decreasing level of  
discreteness (increasing the number  of  al- 
lowable reaction partners n). Fur thermore ,  
we define for various intensities of  surface 
diffusion a range of  parameter  Ye = PA/PB2 
(the ratio of  the gas-phase concentrat ion of  
reactants),  where steady-state surface cov- 

~Y, ~ Y2 
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FIG. 1. The average coverage of  fractions of  Oads 
(solid lines) and CO~ds (dashed lines) and the CO2 pro- 
duction rates (dotted lines) for steady-state operation, 
as a function of  Yco (YA). Transitions occur at Y~ and 
Yz (according to (5)). 

erages coincide for both the MC and the 
IAL models. 

Let  us consider briefly the main results 
presented in papers (5-8), where the MC 
model of  mechanism (1) was studied for the 
case k i = k - 2  = 0 ,  k3 ~ oo in the absence of  
surface diffusion. In the first paper (5), it 
was established that there exists a range of  
steady states with a nonzero reaction rate 
within the interval Y~ < Ya < Y2, where YA 
= PA/(PA + PB2) is the mole fraction of  the 
A reagent in a gas phase, and Yl = 0.389, I12 
= 0.525 (Fig. 1). Out of  this interval the 
surface is completely covered with either A 
(at Ya -> }'2) or B (at YA <- Y1) and the reac- 
tion rate is equal to zero. The authors of  (5) 
called the critical point }11, in which B sur- 
face coverage is continuous,  apparently by 
analogy with accepted classification, the 
" second-order  kinetic phase transi t ion" 
and the critical point Y2, in which the cov- 
erage undergoes a jump,  the "f irs t-order  ki- 
netic phase transi t ion." Here  we use the 
same terminology. A percolation threshold 
of  B atom coverage close to the Y2 point in 
this model was found (6). It proved to be 
achieved at 198 = 0.525. This value is signifi- 
cantly less than 0 .5927-- the  percolation 
threshold for random coverage on a square 
lattice. Fur thermore,  in the same paper it 
was shown that the critical parameters  YI 
and I12 do not depend on lattice sizes, at 
least from the size 40 x 40 (the author  em- 
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ployed lattice sizes from 40 × 40 to 240 × 
240). 

The problem of sizes and types of  lattices 
was investigated in (7). The values Yi = 
0.3875 -+ 0.0001 and Y2 = 0.5277 -+ 0.0002 
obtained for a square lattice were in very 
good agreement with the results in (5). The 
authors of  (7) also established that for a 
hexagonal lattice there are other  critical 
values: YI -~ 0.344, Y2 -~ 0.561. For  a one- 
dimensional lattice and for strips one or two 
sites wide, steady states with nonzero reac- 
tion rates were not observed at all (7). 
These steady states begin to appear  in 
strips three sites wide, and the YA range of  
such steady states increases as the strip 
width increases. Thus, the results pre- 
sented in (7) prove that for narrow and long 
strips the width (critical geometric size) sig- 
nificantly influences the existence and the 
size range of  steady states with nonzero re- 
action rates. However ,  beginning with a 
certain size (at least 40 × 40 for a square 
lattice) lattice size does not affect the 
results, and the differences that arise are 
associated only with the cell geometry.  

Finally, more extensive MC models of  
mechanism (1), in which diffusion of  ad- 
sorbed A atoms was taken into account,  
were investigated (11, 12). The increase in 
A diffusion intensity leads to a shift in the 
critical point Y2 up to the maximum value of  
YA = § (12) and to a further decrease in B 
coverage at this point. 

Let  us proceed to the results of  the inves- 
tigation of  the IAL model of  mechanism (1). 
We consider the irreversible adsorption 
case, for which steady-state surface cover- 
ages are defined (according to the law of  
surface action) by 

(~A = k l P a O z  - k 3 O a O 8  = 0 
(2) 

(98 = 2k2P8:O 2 - k3OAOB = 0, 

where PA, P82 are partial pressures of  the 
gas-phase reagents, and Oz = 1 - ®a -- 08 ,  
O3, O8 are dimensionless concentrat ions 
(coverages) of  intermediate substances Z, 
A Z ,  BZ ,  respectively.  Qualitative analysis 

of system (2) (4, 13) reveals that there al- 
ways exist two boundary steady states with 
zero reaction rates, one of  which (Oa = 1, 
08  = 0) is stable and another  of  which (Oa 
= 0, OB = 1) is unstable. In addition, under 
the conditions 

2kzP82 >- k lPa and 

k3(2kzPn2 - k lPa)  z >-- 8~p2AkzPB2, (3) 

there exist two internal steady states with 
nonzero reaction rates, W = k 3 O a O s ,  lo- 
cated in the reaction polyhedron symmetri- 
cally about the Oa = 08  line (13). For  our  
case k3 ---> ~ the coordinates of  the internal 
stable steady state with a nonzero reaction 
rate are 

Oa = O, OB = 1 -- klPa/2kzPs, . .  (4) 

Setting k l  = k 2  = 1 ,  we obtain 08  = 1 - Ye/ 
2, OA = 0, where Ye = PA/Ps,.. Note that Yp 
= Y A / ( 1  - -  Y A ) .  

Thus, in the IAL model (2) the internal 
stable steady state (4) exists in the interval 
of  0 -< Ye <- 2 (0 <- YA <-- §) in contrast  with 
the MC model (5-7)  (0.3875 -< YA <-- 0.5277; 
compare Fig. 4, curves n~ and n4 ,  or Fig. 3, 
curves d~ and do). 

Summarizing the data from the literature, 
we can state that the IAL and MC models 
of  mechanism (I) for the c a s e  k3 ----> oo have 
been investigated comprehensively.  Let  us 
note an obvious dissimilarity of  the results. 
The range of  steady states with nonzero re- 
action rates in an IAL model is significantly 
wider than that in the MC model; the de- 
pendencies Os(Ye) are different (Fig. 3). In 
addition, as is clear from (4), in the IAL 
model there exists a second-order  kinetic 
phase transition (Fig. 3) at the right bound- 
ary point Ye = 2 (a bifurcation point where 
the internal steady-state solution disap- 
pears), whereas in the MC model there ex- 
ists a first-order phase transition at the right 
boundary point Ye = Y2. Hence,  the sec- 
ond-order  kinetic phase transition in an 
IAL model (2) is shifted to the inner part of  
the range and becomes a first-order kinetic 
phase transition. As shown in Fig. 3, a simi- 



MC M O D E L I N G :  C O M P A R I S O N  W I T H  I D E A L  K I N E T I C S  305 

lar shift occurs at the left boundary point 
(Ye = 0 ~ Ye = YO at which the second- 
order kinetic phase transition still remains. 
We demonstrate below that the dissimilar- 
ity of the results of the IAL and MC models 
is associated with clustering of the ad- 
sorbed substance occurring in the MC 
model with the absence of surface diffu- 
sion. 

MODELS AND ALGORITHMS DESCRIPTION 

We have investigated the model de- 
scribed in (5). In this model, as previously 
pointed out, one-site adsorption of A mole- 
cules and two-site dissociative adsorption 
of B2 molecules are irreversible. Reagents 
can leave the surface only in the form of an 
A B  reaction product. Adsorption rate con- 
stants k~ and kz are considered to be unity. 
The only variable parameter is Ya--the 
mole fraction of the A reagent in a gas 
phase. The simulation algorithm is per- 
formed as follows. The catalyst surface is 
represented by a lattice of 100 × 100 sites 
with periodic boundary conditions and 
square cells. If a random number Wr uni- 
formly distributed over [0, 1] did not ex- 
ceed YA, then the A molecule adsorption 
was attempted; otherwise, the B2 molecule 
adsorption was attempted. The lattice sites 
were randomly chosen, and adsorption was 
allowed only on the blank sites. Each A 
molecule occupied one site, and each B2 
molecule occupied two adjacent sites (i.e., 
two sites having a common edge). To select 
the second vacant site (in the case of B2 
adsorption) only one attempt was made in 
the randomly chosen direction. As soon as 
the particle adsorbed all four (or eight in 
some special experiments) nearest-neigh- 
boring sites, they were checked in random 
order to find the coreagent particle. Under 
B2 adsorption such an inspection took place 
around each of the two occupied sites. As 
soon as the coreagent particle was found, 
the adsorbed particles reacted with unity 
probability. The formed product A B  left the 
surface, thus vacating two sites. 

Diffusion in our experiments was simu- 

lated as a process of random walks of A 
molecules and B atoms among vacant lat- 
tice sites, as follows. One of four directions 
was randomly selected for a randomly cho- 
sen particle and if the nearest site, corre- 
sponding to this direction, was vacant, the 
particle was made to jump into it. Immedi- 
ately after that, the search for the reaction 
partner took place near the new site in the 
same way as in the adsorption case. The 
diffusion cycle was inserted into the main 
one as an inner cycle. After each adsorp- 
tion attempt occurring in the main cycle 
(successful or not), the procedure was 
switched to the diffusion cycle. Thus, the 
value of the diffusion cycle N in our experi- 
ments defines the intensity of surface diffu- 
sion dN (N is the number of diffusion jump 
attempts per one adsorption attempt). 

RESULTS AND DISCUSSION 

Keeping in mind that the difference in 
results obtained with IAL and MC models 
is associated with clustering of the ad- 
sorbed substances, we have investigated 
the MC model with surface diffusion under 
varying diffusivity-to-adsorption ratios. 
The results of these experiments are shown 
in Fig. 2 along with the results of (5) (repre- 
sented in accordance with our aims) and 
those of the IAL model (2). It can be seen 
from Fig. 2 that as a result of increasing 
diffusion intensity, the curves of steady- 
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FIG. 2. Dependencies of steady-state coverages on 
Ye = PA/Ps,~ under varying ratios of adsorption and 
diffusion intensity (index at d shows value of diffusion 
cycle); do are the MC results without diffusion (5), and 
d~ is the solution of the IAL model (2). 
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state coverages d3, dl0, d20, d40, obtained 
by MC simulation, approach the do straight 
line, which resulted from the analytical so- 
lution (4). At N -> 10, they nearly coincide 
within a rather large Ye range. Also in Fig. 2 
it is seen that at N = 3 already the left criti- 
cal point Y~ = Y~ shifts to the point Ye = 0 
(note that even the low intensity of diffu- 
sion eliminates the range with OB = 1) and a 
further increase in the range of steady 
states with a nonzero reaction rate occurs 
only because of the shift of the right critical 
point Y2 to the direction of the larger Ye 
values. The range A YA = Y2 - YI (in terms 
of YA) at varying diffusivity-to-adsorption 
ratios is 

a t N  = 0 

N = 3  

N = 10 

N = 20 

N = 40 

A YA ~ 0.14 -- 0.0002 (5, 7) 

AYA ~ 0.581 +- 0.001 

AYA = 0.605 + 0.001 

AYa = 0.618 -+ 0.001 

AYA ~ 0.628 ---+ 0.001. 

Let us point out that under these shifts the 
nature of kinetic phase transitions in the 
critical points does not alter, 

The observed behavior can be accounted 
for as follows. As is clear from the analyti- 
cal solution (4), at an infinitely large con- 
stant of the reaction rate, the steady-state 
coverage in the range of 0 -< Ye -< 2 is 
formed due to B excess only. In fact, it 
means that within the mentioned range (at 
B excess on the surface) all the A molecules 
adsorbed on the surface instantly react with 
the neighboring B molecules. The situation 
presented is a result of the fulfillment of the 
law of surface a c t i o n a a  principal assump- 
tion forming the basis of the model (2). In 
MC simulation, in the absence of diffusion, 
the Langmuir hypothesis of an ideal ad- 
sorbed layer is not fulfilled and, because the 
reaction between A - A  and B - B  pairs is im- 
possible, but occurs with unity probability 
between A and B pairs, reagent clustering 
becomes inevitable. Due to the clustering, a 
reduction in the reaction rate takes place, 

further storing of the A reagent on the sur- 
face occurs, and consequently the first- 
order kinetic phase transition appears at the 
II2 point (5). 

Employing diffusion in a MC model leads 
to an increase in the reaction rate, leads to 
more complete consumption of the ad- 
sorbed A reagent, and favors the formation 
of coverage as a pure B excess. As long as 
the given level of diffusion intensity pro- 
vides the required reaction rate (for the 
given adsorption rate), the MC curves coin- 
cide with the analytical solution (Fig. 2). As 
soon as the diffusion fails to overcome the 
increasing rate of A adsorption, the cluster- 
ing of the A reagent on the surface and a 
sharp change in coverages occur; i.e., the 
first-order kinetic phase transition (Y2 
point) appears. It is clear that a further in- 
crease in the diffusion intensity to a certain 
limit, depending on lattice size, will allow 
one to obtain the full agreement in the 1AL 
and MC models. 

Let us consider now peculiarities in the 
behavior of the MC model at the left critical 
point Yl. If diffusion is absent, the mecha- 
nism of full B coverage formation is as fol- 
lows. The single vacant sites ("holes") at 
the B location eventually become two sites 
due to A adsorption and further reaction 
with the neighboring B. The newly formed 
double sites are then filled preferably with B 
(Pn2 > PA). As long as such a process re- 
quires availability of A molecules, the full B 
coverage evidently can occur only in the 
range Ye --b O. It is for this reason only that 
the critical point YI is shifted to the right in 
the absence of diffusion in the MC model. 
In the presence of diffusion, the picture 
changes. Each of the double sites obtained 
from a single site in the manner described 
above may, due to the diffusion, "break 
down" into two single sites. Generation of 
the single sites then takes place. Under the 
steady-state conditions, it is balanced by 
the double-site formation occurring when 
the single sites occasionally meet. In this 
case a steady-state coverage, at all Yp ~ O, 
includes a certain concentration of vacant 
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FIG. 3. Dependencies  o f  s teady-s ta te  coverages  on 
Ye under  varying number s  of  allowable reaction part- 
ners  (index at n); n4 are the resul ts  of  (5), n 6 those  of  
(7), n8 those  o f  the present  paper,  and n~ is the solution 
o f  the IAL  model  Eq. (2). 

sites; i.e., it is not full. The full B coverage 
at a sufficiently intensive diffusion (at least 
N >- 3) takes place only at Ye = 0. All this 
clarifies the peculiarities of  the MC model 's  
behavior  at the left critical point. 

Now we discuss the way in which the 
discreteness level of  the MC model (the 
number of  allowable reaction partners) af- 
fects the location of  critical points and the 
width of  the steady-state range with the 
nonzero reaction rate. In (7) it was shown 
that in the absence of  diffusion the width of  
this range and the location of  critical points 
for  a lattice with hexagonal (n = 6) cells 
differ from those in a lattice with square (n 
= 4) cells. Representat ive data from Refs. 
(5, 7) are shown in Fig. 3 (curves/'/4, r/6). In 
Fig. 3 it can be seen that for hexagonal cells 
widening of  the steady-state range with 
nonzero reaction rate occurs  due to the 
shift of  both critical points Y1 and Y2 to the 
corresponding boundary points Ye = 0 and 
Ye -- 2 of  the analytical solution (see curves 
n4 and n6). This result may be interpreted as 
follows. In a lattice with hexagonal cells, 
each of  the particles may have up to six 
reaction partners (unlike the lattice with 
square cells, where those cannot  exceed 
four) and hence the reaction rate is higher 
in this case. The increase in the reaction 
rate results in the widening of  a steady-state 
range with a nonzero reaction rate, as 
shown previously in the case of  diffusion. 

Thus, a further increase in the number of  
allowable reaction partners widens this 
range even more. To illustrate this we have 
investigated the MC model (in the absence 
of  diffusion) for the case where the reaction 
in a lattice with square cells could occur  
with eight neighbors: the nearest  four have 
a common edge and next-nearest  neighbors 
have a common vertex with the given site. 
The results are presented in Fig. 3 (curve 
ns). Here  we can observe a further widen- 
ing of  the steady-state range with a nonzero 
reaction rate compared to the case with 
hexagonal cells. Evidently,  the increase in 
the number of  allowable reaction partners 
(the decrease in the discreteness level) 
causes an MC model to approach an IAL 
model that has a zero discreteness level 
(i.e., the maximum number of  reaction 
partners;  each particle reacts with any 
other). 

To compare  these models in more detail, 
we have investigated the transient kinetics 
of  steady-state formation for the MC model 
in the presence of  diffusion (N = 10). Fig- 
ure 4 presents the time dependencies of  
coverages by A and B particles (transitions 
to the steady state; the initial state was al- 
ways the pure surface O a = O B = 0 )  at vari- 
ous Ye (more and less than Y2). Note that 
two stable steady states (1) O z = 0 ,  O B z 1 
- Ye/2; (2) Oa = 1, 08  = 0 coexist  in the 
range 0 --- Ye <-- 2; therefore the choice of  
the initial state determined, in the end, the 
result of  the transient process.  From Fig. 4 
one can see that near the point Y2 ~ 1.53, 
where the first-order kinetic phase transi- 
tion takes place, the time for the steady- 
state formation drastically increases. If  we 
take the relaxation time (rr) as the time 
when A and B coverages reach steady-state 
values with 5% accuracy,  the rr depen- 
dence on Ye will have the peculiarity shown 
in Fig. 5. This peculiarity corresponds to 
the critical slowing down near the bifurca- 
tion point for the dynamic models (systems 
of autonomous ordinary differential equa- 
tions) (4). Figure 5 also presents the quali- 
tative dependence of  rr on Ye for system 
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FIG. 4. Trans ien t  behav ior  of  O A and OB coverages  (via Monte  Carlo s teps)  under  varying Ye: (a) Ye = 0.5; (b) 
Ye = 1.4; (c) Yp = 1.52; (d) Ye = 1.54; (e) Ye = 1.58. The value o f  diffusion cycle N = 10. 

(2). It is noted that the authors of (5, 7) also 
observed the increase in time of steady- 
state formation in the absence of diffusion 
near the Yz point. Slow relaxation near the 
critical points (bifurcations, phase transi- 
tions, etc.) seems to be a common feature 
of dynamic systems, including the MC 
models. 

Now we consider the way in which lat- 
tice size influences the location of the Yz 
critical point. Let us introduce the follow- 
ing symbols: 

Lo = 0 -l/z - 1 ~ the average distance be- 
tween adsorbed parti- 

LL 
LD = N 1/2 

cles for uniform cover- 
age; 
the linear lattice size; 
the average distance the 
particle passes per N 
random jumps. 

Evidently, until the condition max(Lo, 
Lo) "~ LL holds, neither dependence on lat- 
tice size will take place. Such a dependence 
may appear only in the range max(Lo, Lo) 

LL. Moreover, for Lo  >> Lo and Lo >> 
L o ,  the dependence on lattice size will be 
defined by the largest parameter of these 
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FIG. 5. Dependence of relaxation time (in Monte 
Carlo steps) on Ye under transitions from initial state 
(OA = 0, ®B = 0) to the steady state (at N = 10). A 
qualitative dependence of ~'(Ye) for the IAL model (2) 
is shown in the inset. 

two, and only in the case Lo ~ Lo will it 
depend on both. 

Let us consider the value L ~  ax = (o~r)  -1/2 

- 1, corresponding to the Lo value near the 
critical point }'2. As can be seen from Fig. 
2, in the MC model L~ ax and Lo values are 
interdependent: an increase in Lo causes a 
shift in the critical point Y2 to the right, a 
decrease in On steady-state coverage near 
this point, and an increase in L~ aX . Figure 6 
presents the dependency of L ~  ax o n  LB. It 
is seen that Lo is larger than L~ ax in all 
cases (except in the range of low diffusion 
intensity, Lo ~ 1) and the curve is well ap- 
proximated by the linear dependency 

L~ ax = 0.5 + 0.18 • Lo. (5) 

This means that Lo ~> Lo obviously holds 
for the given model within the range where 
Lo > L~ ~x holds. It follows that the depen- 
dency on lattice sizes may appear within 
the Lo ~ LL range only. Thus, in our exper- 
iments, where a maximal number of diffu- 
sion jumps per one adsorption act was con- 
sidered to be 40 (Lo ~ 6.32), this 
dependence could appear only at LL < 10. 

CONCLUSIONS 

The difference in results obtained with 
IAL and MC models is associated with 

clustering of the adsorbed substances on 
the surface. This clustering sufficiently in- 
fluences the kinetics of two-site B2 adsorp- 
tion. The adsorption rate of monomolecu- 
larly adsorbed reagent A is proportional to 
the fraction of blank sites Oz, while the ad- 
sorption rate of the dissociative adsorbed 
reagent B2 is proportional to the fraction of 
double blank sites. However, the fraction 
of double blank sites can be different for the 
same Oz, since it is defined by the degree of 
homogeneity and ordering of the adsorbed 
layer. It is evident as well that the cluster- 
ing reduces the reaction in the adsorbed 
layer since the species within the clusters 
are not able to react. All of this sharply 
changes the reaction kinetics and results in 
the above-mentioned discrepancies in MC 
and IAL models. The local spatial fluctua- 
tions in the adsorbed layer are responsible 
for clustering in the MC model. To sup- 
press these fluctuations, a sufficiently in- 
tensive diffusion is needed (or equivalently, 
an increase in the allowable number of reac- 
tion partners). Note that in the model under 
study the adsorption mechanism alone does 
not ensure a homogeneous distribution in 
the adsorbed layer. 

The presented analysis shows that with 
an increase in diffusion intensity, or with an 
increase in the allowable number of reac- 
tion partners, the MC model of the catalytic 
mechanism (1) considered in (5-7) ap- 

2 Lmox= 1 _ 

FIG. 6. Dependence of the average distance between 
adsorbed particles B at Y_, points on the value of a 
particle's average displacement for N "diffusion" 
jumps under varying diffusion intensities dN. 
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proaches an IAL model (2) as its limit. Thus 
the results obtained on the MC model fit the 
region where the IAL model (2) is valid. 

Some complicated phenomena, such as 
clustering on surfaces, lateral interactiotas 
between adsorbed species, modification of 
surface properties due to the influence of  
the reaction mixture, precursor adsorption, 
surface reconstruction, and physicochemi- 
cal processes on fractal surfaces, can be ac- 
counted for easily with MC models. These 
models can lead to predictions that could 
not be made through analysis of ordinary 
kinetic equations. 
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